The Ihara-Selberg zeta function for PGL3 and Hecke operators

نویسنده

  • Anton Deitmar
چکیده

A weak version of the Ihara formula is proved for zeta functions attached to quotients of the Bruhat-Tits building of PGL3. This formula expresses the zeta function in terms of Hecke-Operators. It is the first step towards an arithmetical interpretation of the combinatorially defined zeta function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Zeta Function of a Hypergraph

We generalize the Ihara-Selberg zeta function to hypergraphs in a natural way. Hashimoto’s factorization results for biregular bipartite graphs apply, leading to exact factorizations. For (d, r)-regular hypergraphs, we show that a modified Riemann hypothesis is true if and only if the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Solé. Finally, we give an example to show how the...

متن کامل

A New Determinant Expression of the Zeta Function for a Hypergraph

Recently, Storm [10] defined the Ihara-Selberg zeta function of a hypergraph, and gave two determinant expressions of it by the Perron-Frobenius operator of a digraph and a deformation of the usual Laplacian of a graph. We present a new determinant expression for the Ihara-Selberg zeta function of a hypergraph, and give a linear algebraic proof of Storm’s Theorem. Furthermore, we generalize the...

متن کامل

A Combinatorial Proof of Bass’s Evaluations of the Ihara-selberg Zeta Function for Graphs

We derive combinatorial proofs of the main two evaluations of the Ihara-Selberg zeta function associated with a graph. We give three proofs of the first evaluation all based on the algebra of Lyndon words. In the third proof it is shown that the first evaluation is an immediate consequence of Amitsur’s identity on the characteristic polynomial of a sum of matrices. The second evaluation of the ...

متن کامل

Computation of Selberg Zeta Functions on Hecke Triangle Groups

In this paper, a heuristic method to compute the Selberg zeta function for Hecke triangle groups, Gq is described. The algorithm is based on the transfer operator method and an overview of the relevant background is given.We give numerical support for the claim that the method works and can be used to compute the Selberg Zeta function on Gq to any desired precision. We also present some numeric...

متن کامل

Bartholdi Zeta Functions for Hypergraphs

Recently, Storm [8] defined the Ihara-Selberg zeta function of a hypergraph, and gave two determinant expressions of it. We define the Bartholdi zeta function of a hypergraph, and present a determinant expression of it. Furthermore, we give a determinant expression for the Bartholdi zeta function of semiregular bipartite graph. As a corollary, we obtain a decomposition formula for the Bartholdi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005